MATH 54 - HINTS TO HOMEWORK 7

PEYAM TABRIZIAN

Here are a couple of hints to Homework 7! Enjoy :)
NOTE: In case you're stuck with the more standard differential equations questions (hom equations, undetermined coeffs, variation of parameters, etc.), make sure to look at my 'Second-Order Differential equations' and 'Higher-Order Differential Equations'Handouts. They should help you solve all the problems!

Section 4.2: Homogeneous linear equations: the general solution
4.2.26. This problem looks scary, but it's not that scary! In each question, try to solve for c_{1} and c_{2}. In (a), you'll be able to do that, in (b), there will be no solutions, and in (c) there will be infinitely many solutions!
4.2.27, 4.2.28. Here's a useful trick which I showed in lecture. Use the Wronskian:

$$
W(t)=\operatorname{det}\left[\begin{array}{ll}
y_{1}(t) & y_{2}(t) \\
y_{1}^{\prime}(t) & y_{2}^{\prime}(t)
\end{array}\right]
$$

You DON'T have to calculate this determinant explicitly. Just pick a point t_{0} between 0 and 1 where $W\left(t_{0}\right) \neq 0$ (say $\frac{1}{2}$ or $\frac{\pi}{4}$) If $W\left(t_{0}\right) \neq 0$, then your solutions are linearly independent.

Also, for 4.2.27, first try to simplify for functions! For example, if $a e^{-t} \cos (2 t)+$ $b e^{-t} \sin (2 t)=0$, then you can cancel out the e^{-t} which gives you $a \cos (2 t)+b \sin (2 t)=$ 0 . The point is that you only have to show that $\cos (2 t)$ and $\sin (2 t)$ are linearly independent! This should simplify the calculation of the Wronskian!

Section 4.3: Auxiliary equations with complex roots

The problems should be pretty straightforward :) Ignore 4.3.33(c)!

SECTION 4.4: The method of undetermined coefficients

Note: Don't worry about that weird trick about multiplying your solution by t or not. I will not ask you about this weird trick on this exam!
4.4.9. Guess $y_{p}(t)=A$
4.4.11. $y_{p}(t)=A e^{2 t}$
4.4.13. $y_{p}(t)=A \cos (3 t)+B \sin (3 t)$
4.4.15. $y_{p}(x)=(A x+B) e^{x}$
4.4.28. $y_{p}(t)=\left(A t^{4}+B t^{3}+C t^{2}+D t+E\right) e^{t}$ (you always guess the most complicated solution possible)
4.4.30. $y_{p}(t)=A e^{t} \cos (t)+B e^{t} \sin (t)$ (remember that whatever you do with cos, you always have to repeat it with \sin)

SECTION 4.5: THE SUPERPOSITION PRINCIPLE

4.5.17. For the particular solution, guess $y_{p}(t)=A t+B$
4.5.30. First find the general solution of $y^{\prime \prime}+2 y^{\prime}+y=0$, then find a particular solution to $y^{\prime \prime}+2 y^{\prime}+y=t^{2}+1$ (for this, guess $y_{p}(t)=A t^{2}+B t+C$), and then find a particular solution to $y^{\prime \prime}+2 y^{\prime}+y=-e^{t}$ (for this, guess $y_{p}(t)=A e^{t}$), and add all 3 solutions together. Finally, solve for the constants using $y(0)=0, y^{\prime}(0)=2$
4.5.32. $y_{p}(t)=A e^{2 t}+(B t+C) e^{2 t}+\left(D t^{2}+E t+F\right) e^{2 t}$

SECTION 4.6: VARIATION OF PARAMETERS

The easiest way to do the problems in this section is to look at my differential equations handout!

The formula is:
Let $y_{1}(t)$ and $y_{2}(t)$ be the solutions to the homogeneous equation, and suppose $y_{p}(t)=$ $v_{1}(t) y_{1}(t)+v_{2}(t) y_{2}(t)$. Let:

$$
\widetilde{W}(t)=\left[\begin{array}{ll}
y_{1}(t) & y_{2}(t) \\
y_{1}^{\prime}(t) & y_{2}^{\prime}(t)
\end{array}\right]
$$

And solve:

$$
\widetilde{W}(t)\left[\begin{array}{l}
v_{1}^{\prime}(t) \\
v_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{c}
0 \\
f(t)
\end{array}\right]
$$

where $f(t)$ is the inhomogeneous term.
4.6.12. Don't use variation of parameters to find the complete particular solution! First find the general solution to $y^{\prime \prime}+y=0$, then use var. of par. to find a particular solution of $y^{\prime \prime}+y=\tan (t)$, and then use undetermined coefficients to find a particular solution of $y^{\prime \prime}+y=e^{3 t}$ and use undetermined coefficients again to find a particular solution of $y^{\prime \prime}+y=-1$, and add the 4 solutions you found together!

SECTION 6.1: BASIC THEORY OF LINEAR DIFFERENTIAL EQUATIONS

6.1.1, 6.1.5. First of all, make sure that the coefficient of $y^{\prime \prime \prime}$ is equal to 1 . Then look at the domain of each term, including the inhomogeneous term (more precisely, the part of the domain which contains the initial condition -2 resp. $\frac{1}{2}$). Then the answer is just the intersection of the domains you found! For a sample-problem, look at the Higher-Order Differential Equations Handouts!
6.1.7. Use the Wronskian:

$$
W(t)=\operatorname{det}\left[\begin{array}{ccc}
y_{1}(t) & y_{2}(t) & y_{3}(t) \\
y_{1}^{\prime}(t) & y_{2}^{\prime}(t) & y_{3}^{\prime}(t) \\
y_{1}^{\prime \prime}(t) & y_{2}^{\prime \prime}(t) & y_{3}^{\prime \prime}(t)
\end{array}\right]
$$

You DON'T have to calculate this determinant explicitly. Just pick a point t_{0} where $W\left(t_{0}\right) \neq 0$ (in 6.1.7, take $x=0$) If $W\left(t_{0}\right) \neq 0$, then your solutions are linearly independent.
6.1.9. $\cos ^{2}(x)+\sin ^{2}(x)=1$, so linearly dependent . The point is that you generally use the Wronskian to show linear independence. Linear dependence is in general easier to check!
6.1.11. Use the Wronskian with $x=1$ (here you have to do a Wronskian with 4 functions, but that's similar to the 3 function-case!
6.1.15. You have to check 2 things: First show that each function actually solves the differential equation, then use the Wronskian with $x=0$ to show that the functions are linearly independent. Then the general solution is $y(x)=A e^{3 x}+B e^{-x}+C e^{-4 x}$.
6.1.34. You do NOT have to evaluate the determinant!!! If you (in theory) expand the determinant along the last column, you should (in theory) get a third order differential equation. The coefficient of $y^{\prime \prime \prime}$ is the Wronskian of f_{1}, f_{2}, f_{3}, which is nonzero (hence we really get a third-order ODE). Notice that if you plug $y=f_{1}$ into the Wronskian, then the first and the fourth columns are identical, hence linearly dependent, which shows that the determinant is in fact 0 , so f_{1} indeed solved the differential equation. Similarly for f_{2} and f_{3}. Hence $\left\{f_{1}, f_{2}, f_{3}\right\}$ is indeed a fundamental solution set!
6.1.35. Here you have to evaluate the determinant in 34 , with $f_{1}=x, f_{2}=\sin (x), f_{3}=$ $\cos (x)$, but in this case the determinant should be easier to evaluate because the first column has two zeros!

Section 6.2: Homogeneous linear equations with constant coefficients
6.2.1, 6.2.3, 6.2.9. The following fact might be useful:

Rational roots theorem: If a polynomial p has a zero of the form $r=\frac{a}{b}$, then a divides the constant term of p and b divides the leading coefficient of p.

This helps you 'guess' a zero of p. Then use long division to factor out p.
Also check out the 'Higher-order differential equations'-Handout for a sample problem!
6.2.15, 6.2.17. The reason this is written out in such a weird way is because the auxiliary polynomial is easy to figure out! For example, in 6.2.15, the auxiliary polynomial is

$$
(r-1)^{2}(r+3)\left(r^{2}+2 r+5\right)^{2}
$$

6.2.19, 6.2.21. See hints to 6.2 .1
6.2.25. Suppose:

$$
a_{0} e^{r x}+a_{1} x e^{r x}+\cdots+a_{m-1} x^{m-1} e^{r x}=0
$$

Now cancel out the $e^{r x}$, and you get:

$$
a_{0}+a_{1} x+\cdots+a_{m-1} x^{m-1}=0
$$

But $1, x, x^{2} \cdots, x^{m-1}$ are linearly independent, so $a_{0}=a_{1}=\cdots a_{m-1}=0$, which is what we wanted!
6.2.26. Follow the hints, I think it's a really neat problem :)

